Decision Trees and Decision Rules
نویسنده
چکیده
The logic-based decision trees and decision rules methodology performs well across a wide range of data mining problems. It also has the advantage that the results can be expressed in terms that the end-user can easily understand. Directory • Table of
منابع مشابه
A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining
Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...
متن کاملPredicting The Type of Malaria Using Classification and Regression Decision Trees
Predicting The Type of Malaria Using Classification and Regression Decision Trees Maryam Ashoori1 *, Fatemeh Hamzavi2 1School of Technical and Engineering, Higher Educational Complex of Saravan, Saravan, Iran 2School of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran Abstract Background: Malaria is an infectious disease infecting 200 - 300 million people annually. Environme...
متن کاملEvaluating association rules and decision trees to predict multiple target attributes
Association rules and decision trees represent two well-known data mining techniques to find predictive rules. In this work, we present a detailed comparison between constrained association rules and decision trees to predict multiple target attributes. We identify important differences between both techniques for such goal. We conduct an extensive experimental evaluation on a real medical data...
متن کاملConverting Declarative Rules into Decision Trees
Most of the methods that generate decision trees for a specific problem use examples of data instances in the decision tree generation process. This paper proposes a method called “RBDT-1”rule based decision tree -for learning a decision tree from a set of decision rules that cover the data instances rather than from the data instances themselves. RBDT-1 method uses a set of declarative rules a...
متن کاملGenerating Production Rules from Decision Trees
Many inductive knowledge acquisition algorithms generate classifiers in the form of decision trees. This paper describes a technique for transforming such trees to small sets of production rules, a common formalism for expressing knowledge in expert systems. The method makes use of the training set of cases from which the decision tree was generated, first to generalize and assess the reliabili...
متن کامل